Simulating waves with discrete exterior calculus

Mikael Myyrä mikael.b.myyra@jyu.fi

University of Jyväskylä

Acknowledgments

This work has been supported by the Finnish Ministry of Education and Culture's Pilot for Doctoral Programmes (Pilot project Mathematics of Sensing, Imaging and Modelling).

In this presentation

A brief introduction to DEC	3
Case study: 2D acoustics	15
More applications	21

Note: our applications are not inverse problems, but if you use FEM or similar in your work, this might be an interesting addition to your toolbox.

Slides available online at https://molentum.me/id2025dec.pdf

A brief introduction to DEC

A brief introduction to DEC

A geometric approach to discretizing differential equations.

Discrete operations that mimic continuous theory (i.e. preserve certain properties, e.g. Stokes theorem, Leibniz rule)

Advantages:

- geometric flexibility
- efficient time-stepping schemes
- composable implementation
- generalizes to higher dimensions and curved spaces

Starting point: differential equation expressed in terms of differential forms

Starting point: differential equation expressed in terms of differential forms

A differential k-form is an object that can be integrated over a k-dimensional domain. A.k.a. rank-k antisymmetric tensor (field)

1-forms are covectors (row vectors), $\overset{1}{\alpha} = a \, dx + b \, dy$

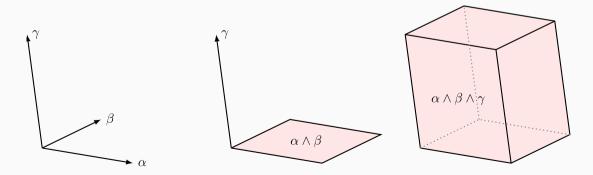
Starting point: differential equation expressed in terms of differential forms

A differential k-form is an object that can be integrated over a k-dimensional domain. A.k.a. rank-k antisymmetric tensor (field)

1-forms are covectors (row vectors), $\overset{1}{\alpha} = a dx + b dy$

Higher-dimensional forms measure oriented parallelograms, parallelepipeds, ...

2-form
$$\overset{2}{\omega} = \overset{1}{\alpha} \wedge \overset{1}{\beta} = (x_1, x_2) \mapsto \alpha(x_1)\beta(x_2) - \alpha(x_2)\beta(x_1)$$



Computing with forms is done with exterior calculus operators:

- exterior derivative d
- Hodge star ★
- wedge product \(\Lambda \)
- interior product i_X
- Lie derivative \mathcal{L}_{χ}
- musical isomorphisms b and #

Computing with forms is done with exterior calculus operators:

- exterior derivative d
- Hodge star ★
- wedge product \(\Lambda \)
- interior product i_X
- Lie derivative \mathcal{L}_{χ}
- musical isomorphisms b and #

d generalizes the differential of a function. Takes a k-form and produces a (k + 1)-form.

Correspondence with classical vector calculus (in \mathbb{R}^3):

- $df \sim \nabla f$ (a 0-form is a scalar function)
- $dv^1 \sim \nabla \times v$
- $dw^2 \sim \nabla \cdot w$

d generalizes the differential of a function. Takes a k-form and produces a (k + 1)-form.

Correspondence with classical vector calculus (in \mathbb{R}^3):

- $df \sim \nabla f$ (a 0-form is a scalar function)
- $dv^1 \sim \nabla \times v$
- $dw^2 \sim \nabla \cdot w$

Hodge star \star represents the "orthogonal complement": Transforms a k-form to the perpendicular (n - k)-form

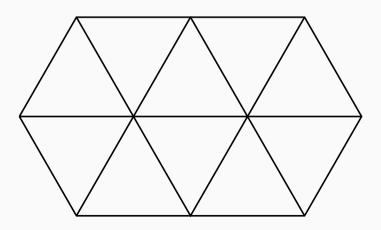
Main idea of DEC: discretize the operators (and operands), try to preserve key properties

Discretization becomes a drop-in replacement!

Main idea of DEC: discretize the operators (and operands), try to preserve key properties

Discretization becomes a drop-in replacement!

Domain discretized as a polyhedral (usually simplicial) mesh

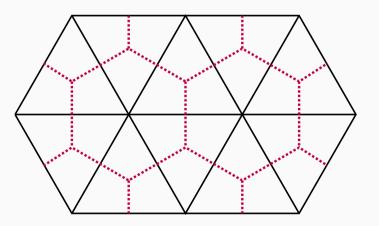


Main idea of DEC: discretize the operators (and operands), try to preserve key properties

Discretization becomes a drop-in replacement!

Domain discretized as a polyhedral (usually simplicial) mesh

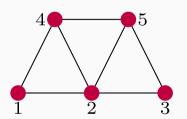
...and its (Voronoi-Delaunay) dual

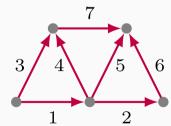


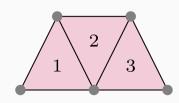
Differential forms discretized as cochains: vectors of values associated with mesh elements

Discretizing a continuous **k**-form **x**:

$$X_i = \int_{\sigma_i} x$$



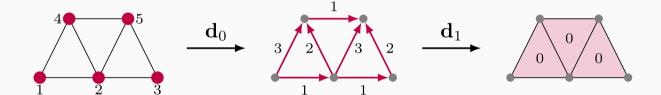




Operators discretized as matrices

Operators discretized as matrices

Discrete d is the coboundary operator, takes a k-cochain to a (k + 1)-cochain using Stokes theorem $\int_{\sigma} d\omega = \int_{\partial \sigma} \omega$



$$\mathbf{d}_0 = \begin{bmatrix} -1 & 1 & & & \\ & -1 & 1 & & \\ & -1 & & 1 & \\ & -1 & & 1 & \\ & & -1 & & 1 \\ & & & -1 & 1 \\ & & & & -1 & 1 \end{bmatrix}, \quad \mathbf{d}_1 = \begin{bmatrix} 1 & -1 & 1 & & \\ & & -1 & 1 & \\ & & & -1 & 1 & \\ & & & & & -1 & 1 \end{bmatrix}$$

Stokes theorem is satisfied exactly, using only topological information!

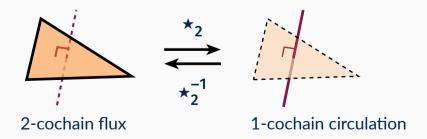
Discrete \star takes a k-cochain to a (n - k)-cochain on the other (primal/dual) mesh

An approximation of the metric geometry

Many possible definitions. The standard \star is a diagonal matrix of primal-dual volume ratios

$$\star_{ii} = \frac{\left|\sigma_i^*\right|}{\left|\sigma_i\right|}$$

Diagonality of ★ is the key to DEC's efficiency.



Implementation

DEC primitives are simple matrices and vectors ⇒ generic and composable!

Rust library: dexterior (https://codeberg.org/molentum/dexterior)

Given a simplicial mesh of any dimension, generates \mathbf{d} , \star and various utilities

Type inference and compile-time checks to ensure dimensions match

Real-time visualization (2D only for now)

Summary

In summary, DEC represents

- geometry as a primal-dual pair of meshes
- differential forms as values on mesh elements (cochains)
- operators as matrices describing geometric relationships

Drawbacks:

- need for the dual mesh; sensitivity to mesh quality
- higher-order schemes are challenging to formulate and lose the diagonality of the Hodge star

Recommended reading

- Desbrun, Kanso & Tong (2006). Discrete Differential Forms for Computational Modeling [1]
 - Concise but thorough summary of DEC theory, great intermediate resource.
- Crane, de Goes, Desbrun & Schröder (2013). Digital geometry processing with discrete exterior calculus [2]
 - Detailed course materials with great visualizations.
- Blair Perot & Zusi (2014). Differential Forms for Scientists and Engineers. [3]
 - Exterior calculus for beginners.
- Myyrä (2023). Discrete Exterior Calculus and Exact Controllability for Time-Harmonic Acoustic Wave Simulation [4]
 - My own master's thesis, where I tried to give a layman-friendly introduction.
- Hirani (2003). Discrete Exterior Calculus [5]
 - The thesis that coined DEC.

Scalar wave equation for velocity potential Φ:

$$\frac{\partial^2 \Phi}{\partial t^2} - c^2 \Delta \Phi = 0$$

Scalar wave equation for velocity potential Φ:

$$\frac{\partial^2 \Phi}{\partial t^2} - c^2 \Delta \Phi = 0$$

expressed in terms of velocity $\mathbf{v} = \nabla \Phi$ and pressure $\mathbf{p} = \frac{\partial \Phi}{\partial t}$ as a first-order system

$$\begin{cases} \frac{\partial p}{\partial t} - c^2 \nabla \cdot \mathbf{v} = 0\\ \frac{\partial v}{\partial t} - \nabla p = 0 \end{cases}$$

Scalar wave equation for velocity potential Φ:

$$\frac{\partial^2 \Phi}{\partial t^2} - c^2 \Delta \Phi = 0$$

expressed in terms of velocity $\mathbf{v} = \nabla \Phi$ and pressure $\mathbf{p} = \frac{\partial \Phi}{\partial t}$ as a first-order system

$$\begin{cases} \frac{\partial p}{\partial t} - c^2 \nabla \cdot \mathbf{v} = 0\\ \frac{\partial v}{\partial t} - \nabla p = 0 \end{cases}$$

Converted to exterior calculus with 0-form $\overset{0}{\mathbf{p}}$ and 1-form $\overset{1}{\mathbf{v}}$:

$$\begin{cases} \frac{\partial p}{\partial t} - c^2 \star d \star v = 0 \\ \frac{\partial v}{\partial t} - dp = 0 \end{cases}$$

DEC spatial discretization

Replace $\stackrel{\circ}{\mathbf{p}}$, $\stackrel{\circ}{\mathbf{v}}$ with primal 0-cochain P, $P_i = \stackrel{\circ}{\mathbf{p}}(x_i)$, and primal 1-cochain V, $V_i = \int_{e_i} \stackrel{\circ}{\mathbf{v}}$.

Replace d, \star with discrete d, \star .

$$\Rightarrow \begin{cases} \frac{\partial P}{\partial t} - c^2 \star_0^{-1} \mathbf{d}_1^T \star_1 V = 0 \\ \frac{\partial V}{\partial t} - \mathbf{d}_0 P = 0 \end{cases}$$

Leapfrog timestepping

Place variables at staggered time instances and use central differences

$$\frac{\partial P}{\partial t} \approx \frac{P^{n+1} - P^n}{\Delta t}, \qquad \frac{\partial V}{\partial t} \approx \frac{V^{n+\frac{3}{2}} - V^{n+\frac{1}{2}}}{\Delta t}$$

Leapfrog timestepping

Place variables at staggered time instances and use central differences

$$\frac{\partial P}{\partial t} \approx \frac{P^{n+1} - P^n}{\Delta t}, \qquad \frac{\partial V}{\partial t} \approx \frac{V^{n+\frac{3}{2}} - V^{n+\frac{1}{2}}}{\Delta t}$$

$$\Rightarrow \begin{cases} \frac{P^{n+1} - P^n}{\Delta t} - c^2 \star_0^{-1} \mathbf{d}_1^T \star_1 V^{n+\frac{1}{2}} = 0 \\ \frac{V^{n+\frac{3}{2}} - V^{n+\frac{1}{2}}}{\Delta t} - \mathbf{d}_0 P^{n+1} = 0 \end{cases}$$

Leapfrog timestepping

Place variables at staggered time instances and use central differences

$$\frac{\partial P}{\partial t} \approx \frac{P^{n+1} - P^n}{\Delta t}, \qquad \frac{\partial V}{\partial t} \approx \frac{V^{n+\frac{3}{2}} - V^{n+\frac{1}{2}}}{\Delta t}$$

$$\Rightarrow \begin{cases} \frac{P^{n+1}-P^n}{\Delta t} - C^2 \star_0^{-1} \mathbf{d}_1^T \star_1 V^{n+\frac{1}{2}} = 0\\ \frac{V^{n+\frac{3}{2}}-V^{n+\frac{1}{2}}}{\Delta t} - \mathbf{d}_0 P^{n+1} = 0 \end{cases}$$

Multiply by Δt and reorganize, get the explicit timestep formulas

$$P^{n+1} = P^{n} + \Delta t c^{2} \star_{0}^{-1} \mathbf{d}_{1}^{T} \star_{1} V^{n+\frac{1}{2}}$$

$$V^{n+\frac{3}{2}} = V^{n+\frac{1}{2}} + \Delta t \mathbf{d}_{0} P^{n+1}$$

(Conditionally stable with short enough Δt , subject to CFL condition)

Implementation with dexterior

Now that we have the timestep formulas

$$P^{n+1} = P^{n} + \Delta t c^{2} \star_{0}^{-1} \mathbf{d}_{1}^{T} \star_{1} V^{n+\frac{1}{2}}$$

$$V^{n+\frac{3}{2}} = V^{n+\frac{1}{2}} + \Delta t \mathbf{d}_{0} P^{n+1}$$

implementation in code is very simple:

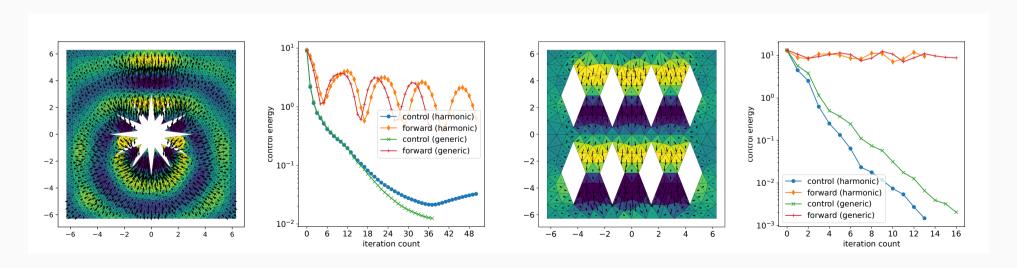
```
use dexterior::*;
let mesh = SimplicialMesh::new(vertices, indices);
let mut p: Cochain<Primal, 0> = mesh.integrate_cochain(...);
let mut v: Cochain<Primal, 1> = mesh.integrate_cochain(...);
loop {
   p += dt * c_sq * mesh.star() * mesh.d() * mesh.star() * &v;
   v += dt * mesh.d() * &p;
}
```

Results

Master's thesis [4], upcoming paper [6]

DEC + controllability-based optimization for time-harmonic acoustic scattering problems + alternative Hodge star for spatially harmonic problems

(using PyDEC - dexterior didn't exist yet)



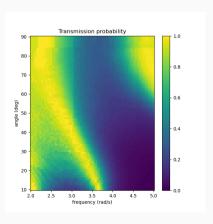
More applications

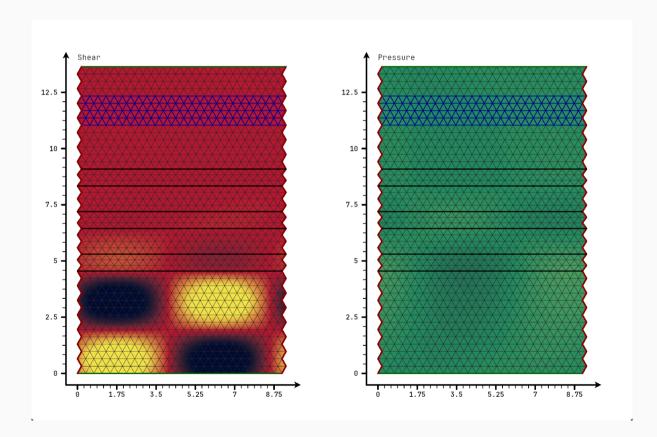
Phonon transmission

Ongoing work: elastic waves in vertically layered, horizontally periodic structures

Applications in nanoscale heat transport (current focus), seismology, etc.

$$\begin{cases} \frac{\partial \overset{\circ}{p}}{\partial t} - (\lambda + 2\mu) \star d\overset{\circ}{q} = 0 \\ \frac{\partial \overset{\circ}{w}}{\partial t} - \mu \star d \star \overset{\circ}{q} = 0 \\ \rho \frac{\partial \overset{\circ}{v}}{\partial t} - \star d\overset{\circ}{p} + d\overset{\circ}{w} = 0 \end{cases}$$





Other works from our research group

Electromagnetics and generalized wave propagation problems (Räbinä et al.) [7], [8]

GPU-accelerated quantum mechanics (Kivioja) [9], [10]

Minkowski spacetime meshing (Mönkölä et al.) [11]

Higher-order discretizations (Lohi) [12]

References

- [1] M. Desbrun, E. Kanso, and Y. Tong, "Discrete Differential Forms for Computational Modeling," *Discrete Differential Geometry*, 2006.
- K. Crane, F. de Goes, M. Desbrun, and P. Schröder, "Digital Geometry Processing with Discrete Exterior Calculus," in *ACM SIGGRAPH 2013 Courses*, in SIGGRAPH '13. New York, NY, USA: Association for Computing Machinery, Jul. 2013, pp. 1–126. doi: 10.1145/2504435.2504442.
- J. Blair Perot and C. J. Zusi, "Differential Forms for Scientists and Engineers," *Journal of Computational Physics*, vol. 257, pp. 1373–1393, Jan. 2014, doi: 10.1016/j.jcp.2013.08.007.
- [4] M. Myyrä, "Discrete Exterior Calculus and Exact Controllability for Time-Harmonic Acoustic Wave Simulation," 2023.
- [5] A. N. Hirani, "Discrete Exterior Calculus," 2003.
- M. Myyrä, "Discrete Exterior Calculus and Controlled Time Integration for Time-Harmonic Acoustics," Challenges in Design Methods, Numerical Tools and Technologies for Sustainable Aviation, Transport and Industry. in Computational Methods in Applied Sciences. Jan. 2026.
- J. Räbinä, S. Mönkölä, and T. Rossi, "Efficient Time Integration of Maxwell's Equations with Generalized [7] Finite Differences," SIAM Journal on Scientific Computing, vol. 37, no. 6, pp. B834–B854, Jan. 2015, doi: 10.1137/140988759.

References

- J. Räbinä, L. Kettunen, S. Mönkölä, and T. Rossi, "Generalized Wave Propagation Problems and Discrete Exterior
- [8] Calculus," ESAIM: Mathematical Modelling and Numerical Analysis, vol. 52, no. 3, pp. 1195–1218, May 2018, doi: 10.1051/m2an/2018017.
- M. Kivioja, S. Mönkölä, and T. Rossi, "GPU-accelerated Time Integration of Gross-Pitaevskii Equation with
- [9] Discrete Exterior Calculus," *Computer Physics Communications*, vol. 278, p. 108427, Sep. 2022, doi: 10.1016/j.cpc.2022.108427.
 - M. Kivioja, R. Zamora-Zamora, A. Blinova, S. Mönkölä, T. Rossi, and M. Möttönen, "Evolution and Decay of an
- [10] Alice Ring in a Spinor Bose-Einstein Condensate," *Physical Review Research*, vol. 5, no. 2, p. 23104, May 2023, doi: 10.1103/PhysRevResearch.5.023104.
- S. Mönkölä, J. Räbinä, T. Saksa, and T. Rossi, "(2+1)-Dimensional Discrete Exterior Discretization of a General
- [11] Wave Model in Minkowski Spacetime," Results in Applied Mathematics, vol. 25, p. 100528, Feb. 2025, doi: 10.1016/j.rinam.2024.100528.
- [12] J. Lohi, "Systematic Implementation of Higher Order Whitney Forms in Methods Based on Discrete Exterior Calculus," *Numerical Algorithms*, vol. 91, no. 3, pp. 1261–1285, Nov. 2022, doi: 10.1007/s11075-022-01301-2.